
Developing a competitive
JVM in Open Source

Pavel Ozhdikhin, Pavel PervovPavel Ozhdikhin, Pavel Pervov

Contributors: Xiao-Feng Li, Vladimir BeliaevContributors: Xiao Feng Li, Vladimir Beliaev

Agenda

About the Harmony project
Harmony DRLVMy
Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source 2

Apache Harmony

Primary goal – full implementation of Java SE
Compatible class library
C titi i t l hiCompetitive virtual machine
Full JDK toolset

Founded in Apache Incubator, May 2005
Became the Apache Project, Oct 2006
Facts today

27 committers at the moment, 50 commits weekly, y
250 messages weekly in mailing list
150 downloads weekly

Developing a competitive JVM in
Open Source 3

Peculiarities of Open Source p
Development

Problems
No initial credibility No initial credibility
Highly depends on the community
Strong competitionStrong competition

SolutionsSolutions
Openness
Strong modular designStrong modular design
Competitive performance

Developing a competitive JVM in
Open Source 4

Design Modularity

Modularity makes it easier for developers,
researchers, and testersesea c e s, a d teste s

beans lang
JSE API

he
r

XML NIO

g
util
net
io

security

Java SE class libraries

Class library

la
un

ch

Trace JIT
compiler Interpreter Memory

manager
Thread
manager

native
code

JNI

VMI (C) Kernel classes (Java)

VM Portability Layer

Hardware / Operating System

Developing a competitive JVM in
Open Source 5

Harmony Status

~2.3 million LOC (Java 1.6m, C/C++ 0.7m)

ComponentsComponents
API: 98% JDK5, 90% JDK6
VMs: JCHEVM, BootJVM, SableVM, DRLVM, IBM J9,
BEA JRockitBEA JRockit
Tools: javac, javah, jarsigner, keytool

PlatformsPlatforms
Windows/Linux, x86/x86-64/ipf

Continuous integration infrastructure

Developing a competitive JVM in
Open Source 6

Agenda

About the Harmony project
Harmony DRLVMy
Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source 7

Harmony DRLVM

The default VM for Apache Harmony

Components
Two JIT compilers: fast and optimizing
Three GCs: copying parallel and concurrentThree GCs: copying, parallel, and concurrent

Features
optimized monitors, JVMTI, class unloading,
i t tinterpreter

Targets
Robustness, performance, and modularity, p , y
Server and desktop

Developing a competitive JVM in
Open Source 8

DRLVM Modularity Principles

Modularity: Functionality is grouped into a limited
number of coarse-grained modules with well defined
interfacesinterfaces.

Pluggability: Module implementations can be replaced
t il ti ti M lti l i l t ti at compile time or run time. Multiple implementations

of a given module are possible.

Consistency: Interfaces are consistent across platforms.

Performance: Interfaces fully enable implementation of y p
modules optimized for specific target platforms.

Developing a competitive JVM in
Open Source 9

DRLVM Modules

Developing a competitive JVM in
Open Source 10

Agenda

About the Harmony project
Harmony DRLVMy
Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source 11

DRLVM GC Design Goals

Robust, performing, and flexible GC

Robustness: modularity and code
qualityquality

Performance: scalability and Performance: scalability and
throughput

Flexibility: configurability and
extensibility

Developing a competitive JVM in
Open Source 12

DRLVM GC Current Status

GCv4.1
Copying collector with compaction fallbackCopying collector with compaction fallback
Sequential, non-generational

GCv5
Copying collector with compaction fallback
Parallel, generational (optional)

Tick
On-the-fly mark-sweep-compact
Concurrent, parallel, generational (optional)

Developing a competitive JVM in
Open Source 13

GCv4.1: Characteristics

Pros
Good performanceGood performance
Easy to learn

CCons
Algorithm is not parallel

Cannot leverage multiple cores

Has no generational support

Developing a competitive JVM in
Open Source 14

GCv5: Characteristics

Pros
Good performanceGood performance
Scalable on multiple cores
Runtime adaptations Runtime adaptations

Cons
Pause time in major collection is highPause time in major collection is high
No support for conservative collection

Developing a competitive JVM in
Open Source 15

Tick: Characteristics

Pros
Short collection pause timeShort collection pause time

Target is at ms level
Parallel and adaptive collectionp
Diverse working models

Concurrent or stop-the-world
Standalone or generational

Cons
Collection pause is a tradeoff with GC
throughput

Developing a competitive JVM in
Open Source 16

Agenda

About the Harmony project
Harmony DRLVMy
Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source 17

DRLVM execution engines

The Execution Manager
InterpreterInterpreter
Jitrino compilers:

Jitrino.JET
Jitrino.OPT

O ti i tiOptimizations
Pipeline Management Framework
Internal profilerInternal profiler

Developing a competitive JVM in
Open Source 18

The Execution Manager
Keeps a registry for all
execution engines and profile
collectors available at run time

Selects an execution engine to
compile a method by a VM
request according to the request according to the
configuration file

Coordinates profile collection
and use between various and use between various
execution engines

Supports asynchronous
il ti i t recompilation in a separate

thread to utilize multi-core

Developing a competitive JVM in
Open Source 19

19

Dynamic profilers
EB_PROFILER
Entry/backedge profile. Collects 2 values for each method:

number of times a method has been called (entry (y
counter)
number of loop interactions (backedge counter)
performed in a method

EDGE_PROFILER
Edge profile. Collects 2 types of values for each method:

number of times a method has been callednumber of times a method has been called
number of times every branch in a method has been
taken

VALUE_PROFILER
Value profile. Collects up to N the most frequent values for each
registered profiling site in a method. Uses advanced Top-N-
Value algorithm

Developing a competitive JVM in
Open Source 20

Value algorithm.

Jitrino Architecture

Developing a competitive JVM in
Open Source 21

Jitrino.JET – baseline compiler
Simple: no internal representation, just 2 passes
over bytecode

Small: ~500K code, ~14K NSLOCs

F t C il ti d 10 20K th d Fast: Compilation speed ~ 10-20K methods per
second (1.5Ghz laptop)

Supports JVMTI, VMMagic and can easily be
modified to support new features

Produces more then 10 times faster code than the
interpreter (and ~2 times slower than the code
made by Jitrino.OPT)

Developing a competitive JVM in
Open Source 22

Jitrino.JET: log sample

public static int max(int x, int y) {
return x > y ? x : y;

Java method:
return x > y ? x : y;

}
Prologue: <store all callee‐save registers in use>
;; 0) ILOAD_0

1) ILOAD 1;; 1) ILOAD_1
;; 2) IF_ICMPLE ->9<-
0x03EB00B6 cmp ebx, esi
0x03EB00B8 jle dword 0x11

5) ILOAD 0;; 5) ILOAD_0
;; 6) GOTO ->10<-
0x03EB00BE mov [ebp+0xffffff14], ebx
0x03EB00C4 jmp 0xb

9) ILOAD 1;; 9) ILOAD_1
0x03EB00C9 mov [ebp+0xffffff14], esi
;; 10) IRETURN
0x03EB00CF mov eax, [ebp+0xffffff14]
E il t ll ll i t i

Developing a competitive JVM in
Open Source 23

Epilogue: <restore all callee‐save register in use>

Jitrino.OPT – optimizing compiler

The fast, aggressively optimizing compiler

Features:
High- and low-level intermediate representations

Most optimizations run at the platform-independent high level

Supports edge and value profiles
Pipeline Management Framework
A flexible logging system enables tracing of major
Jitrino activities, including detailed IR dumps during
compilation

Developing a competitive JVM in
Open Source 24

Jitrino.OPT optimizations

Guarded devirtualization
Global Code MotionGlobal Code Motion
Escape Analysis based optimizations:

Synchronization eliminationSynchronization elimination
Scalar replacement

Array initialization/copying optimizationsArray initialization/copying optimizations
Array bounds check elimination
and many other most known …and many other most known
optimizations

Developing a competitive JVM in
Open Source 25

Advanced optimizations

VM Magics and helper inlining
Allow developers to write performance critical code p p
in Java using address arithmetic and low-level
compiler intrinsics.

Value profile guided devirtualization
Effectively de-virtualize not only virtual but also
interface and abstract callsinterface and abstract calls

Lazy exceptionsLazy exceptions
Create exception objects on demand, i.e. only if it’s
actually used in the exception handler

Developing a competitive JVM in
Open Source 26

Helper: Bump-Pointer Allocation
@Inline
public static Address alloc(int objSize, int allocationHandle) {

Address TLS_BASE = VMHelper.getTlsBaseAddress();

Address allocator_addr = TLS_BASE.plus(TLS_GC_OFFSET);
Address allocator = allocator_addr.loadAddress();
Address free_addr = allocator.plus(0);
Address free = free_addr.loadAddress();
Address ceiling = allocator.plus(4).loadAddress();Address ceiling allocator.plus(4).loadAddress();

Address new_free = free.plus(objSize);
if (new_free.LE(ceiling)) {

free_addr.store(new_free);
f t (ll ti H dl)free.store(allocationHandle);
return free;

}
return VMHelper.newResolved (objSize, allocationHandle);

}

Developing a competitive JVM in
Open Source 27

Pipeline Management Framework

PMF features:
Standard interface for the pipeline steps (IR transformers)
Nested pipelines

PMF - the JIT pluggability vehicle
Nested pipelines
Full control over the pipeline steps and their options
through the Java property mechanism
Rich control over the logging based on JIT instances,
i li l d h d filpipelines, class and method filters

PMF details:
http://harmony.apache.org/subcomponents/drlvm/JIT_PM
F.html

Developing a competitive JVM in
Open Source 28

Jitrino.OPT internal profiler
The internal profiler (iprof) in the Jitrino.OPT compiler
can instrument the code so that per-method counters
of the instructions executed at run time will be
d d

To use iprof you need to create the iprof.cfg configuration
file with the profiler’s configuration and specify the following
option: -XX:jit.arg.codegen.iprof=on

dumped.

option: XX:jit.arg.codegen.iprof on

An example of the iprof output:

Method name Insts ByteCodeSize MaxBBExec HottestBBNum …

java/lang/Thread.<clinit> 7 13 1 2 …

java/lang/Object.<init> 6445 1 6445 2 …ja a/ a g/Object. t 6 5 6 5

java/lang/Thread.<init> 2440 257 24 0 …

… … … … … …

Developing a competitive JVM in
Open Source 29

JIT Resources
Execution Manager:
http://harmony.apache.org/subcomponents/drlvm/EM.html

Jitrino JIT Compiler:
http://harmony.apache.org/subcomponents/drlvm/JIT.html

l k d lPipeline Management Framework and Jitrino logging system:
http://harmony.apache.org/subcomponents/drlvm/JIT_PMF.h
tml

Jitrino.OPT internal profiler:
http://harmony.apache.org/subcomponents/drlvm/internal_p
rofiler.html

Harmony performance reports:
http://harmony.apache.org/performance.html

Developing a competitive JVM in
Open Source 30

Agenda

About the Harmony project
Harmony DRLVMy
Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source 31

Summary

Harmony DRLVM is a product-quality VM
being developed in Open Source

DRLVM benefits from its modularity and
pluggability inpluggability in

Development, research and testing

DRLVM id titi DRLVM provides a competitive
performance with its advanced JIT and
GC implementationsp

Developing a competitive JVM in
Open Source 32

What’s in this for me

Build your research projects taking
advantage of DRLVM modular design

Use Harmony DRLVM to run your product

Reuse parallel Garbage Collector, Classlib
 JITor JIT

C t ib t t th H j t ith Contribute to the Harmony project with
your ideas and energies

Developing a competitive JVM in
Open Source 33

Resources
Harmony project:
http://harmony.apache.org

Project downloads:
http://harmony.apache.org/download.cgi

DRLVM Developer’s Guide:DRLVM Developer s Guide:
http://harmony.apache.org/subcomponents/drlvm/developers_gu
ide.html

D b i DRLVMDebugging DRLVM
http://harmony.apache.org/subcomponents/drlvm/debugging_V
M_and_JIT.html

How to write GC for DRLVM:
http://harmony.apache.org/subcomponents/drlvm/gc-howto.html

Developing a competitive JVM in
Open Source 34

Thanks!

Q&AQ

