Developing a competitive
JVM In Open Source

Pavel Ozhdikhin, Pavel Pervov

Contributors: Xiao-Feng Li, Vladimir Beliaev

Agenda

O O O O O

About the Harmony project
Harmony DRLVM

Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source

Apache Harmony

o Primary goal - full implementation of Java SE
Compatible class library
Competitive virtual machine
Full JDK toolset

o Founded in Apache Incubator, May 2005

o Became the Apache Project, Oct 2006

o Facts today

27 committers at the moment, 50 commits weekly
250 messages weekly in mailing list
150 downloads weekly

Developing a competitive JVM in
Open Source

Peculiarities of Open Source
Development

o Problems
No initial credibility
Highly depends on the community
Strong competition

o Solutions
Openness
Strong modular design
Competitive performance

Developing a competitive JVM in
Open Source

Design Modularity

o Modularity makes it easier for developers,
researchers, and testers

lang

util securit

net y

10 Java SE class libraries

XML

—

D
<

O VMI (C) Kernel classes (Java) ——

-

cjd code
— JIT interorci Memory Thread

compiler P manager manager

Portability Layer

Hardware / Operating System

Developing a competitive JVM in
Open Source 5

Harmony Status

o —2.3 million LOC (Java 1.6m, C/C++ 0.7m)

o Components
API: 98% JDK5, 90% JDKG6

VMs: JCHEVM, BootJVM, SableVM, DRLVM, IBM J9,
BEA JRockit

Tools: javac, javah, jarsigner, keytool

o Platforms
Windows/Linux, x86/x86-64/ipf

o Continuous integration infrastructure

Developing a competitive JVM in
Open Source

Agenda

O O O O O

About the Harmony project
Harmony DRLVM

Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source

Harmony DRLVM

o The default VM for Apache Harmony

o Components
Two JIT compilers: fast and optimizing
Three GCs: copying, parallel, and concurrent

o Features

optimized monitors, JVMTI, class unloading,
interpreter

o Targets
Robustness, performance, and modularity

Server and desktop

Developing a competitive JVM in
Open Source

DRLVM Modularity Principles

o Modularity: Functionality is grouped into a limited
number of coarse-grained modules with well defined
interfaces.

o Pluggability: Module implementations can be replaced
at compile time or run time. Multiple implementations
of a given module are possible.

o Consistency: Interfaces are consistent across platforms.

o Performance: Interfaces fully enable implementation of
modules optimized for specific target platforms.

Developing a competitive JVM in
Open Source 9

DRLVM Modules

——————————————————— —h o
I I | Class Libraries
L -
|
I I I
PIVMTESVMI FINT Tk ernel Classes
I I I
Tagp_aIT
i —
: YWl Core
| [-
| M_Interpreter - —
: LT J{VM GC%‘-—-’M cofiman ! FEM_M
=== L.:::::r"_—_—_— —————— == 1
[~~~ GC : : Execution Manager
| 2 ¥ S i
1 | |
| Garbage Collector I | Profile access J)CL,IStEIITI PC
. :-I::l L ! v,
| |
! I _________ - — — — — JI | I_.'" ___________
| | |
——————————— i e e e |
| I L e
| [
\TT T T FTM_wM STM_GC ([Thread helpers v IJ“ sl
| |
| | —|
i I ! JIT Compiler
| Thread Manager I 1O
| |
I N IX ________ — —
1 N | blnterpreter
_____ T“Ger‘ueric :
fe e 0
/| Interpreter
Forting Layer ([
[
Execution Engine

DREL ¥Yirtual Machine

Developing a competitive JVM in
Open Source

Agenda

O O O O O

About the Harmony project
Harmony DRLVM

Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source

11

DRLVM GC Design Goals

o Robust, performing, and flexible GC

Robustness: modularity and code
quality

Performance: scalability and
throughput

Flexibility: configurability and
extensibility

Developing a competitive JVM in
Open Source 12

DRLVM GC Current Status

o GCv4.1

Copying collector with compaction fallback
Sequential, non-generational

o GCv5

Copying collector with compaction fallback
Parallel, generational (optional)

o Tick

On-the-fly mark-sweep-compact
Concurrent, parallel, generational (optional)

Developing a competitive JVM in
Open Source 13

GCv4.1: Characteristics

Pros
Good performance
Easy to learn

cons

Algorithm is not parallel
o Cannot leverage multiple cores

Has no generational support

Developing a competitive JVM in
Open Source

14

GCv5: Characteristics

Pros
Good performance
Scalable on multiple cores
Runtime adaptations

cons
Pause time in major collection is high
No support for conservative collection

Developing a competitive JVM in
Open Source

15

Tick: Characteristics

Pros

Short collection pause time

o Target is at ms level
Parallel and adaptive collection
Diverse working models

o Concurrent or stop-the-world
o Standalone or generational

cons

Collection pause is a tradeoff with GC
throughput

Developing a competitive JVM in
Open Source 16

Agenda

O O O O O

About the Harmony project
Harmony DRLVM

Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source

17

DRLVM execution engines

o The Execution Manager
o Interpreter

o Jitrino compilers:
Jitrino . JET
Jitrino.OPT
o Optimizations
o Pipeline Management Framework
o Internal profiler

Developing a competitive JVM in
Open Source

18

The Execution Manager

o Keeps a registry for all [s —
execution engines and profile e [
collectors available at run time

o Selects an execution engine to P s
Complle a methOd by a VM eeeee tiemethodrequest(Method_f—ilandl) |
request according to the [
Conflguratlon flle compile method callback (Method_Ha dl +JIT) 3

compile methpd request ;

o) Coordlnates profile collection et ;
and use between various Titft;
execution engines ‘ ‘

o Supports asynchronous
recompilation in a separate A | |
thread to utilize multi-core — cogple metod e

Developing a competitive JVM in

Open Source
19

Dynamic profilers

o EB_PROFILER
Entry/backedge profile. Collects 2 values for each method:

number of times a method has been called (entry
counter)

number of loop interactions (backedge counter)
performed in a method

o EDGE_PROFILER
Edge profile. Collects 2 types of values for each method:

number of times a method has been called

number of times every branch in a method has been
taken

o VALUE PROFILER
Value profile. Collects up to N the most frequent values for each
registered profiling site in a method. Uses advanced Top-N-
Value algorithm.

Developing a competitive JVM in
Open Source 20

Jitrino Architecture

‘ v 1T r t u a |l M a c h i n e
Fy ey A Fy Fy
¥l ~ JIT compile-time Vi ~JIT run-time
interface interface
Run-time | P,
support |
L Jitrino JET | .
Jitrine JET | ™ (BItS) -
Low-lewel Reqgistry un-time infoy Run-tim e
optimizer allocator (GC map,..) support
; F 3
High-lewvel
Java o
bytecode Dpt|mklzer
4 - T
1A-32/ o =
W Intel® 4 | IA-32/1Intel® 64 Ny Ia 32/Int.e| B4 |
. e selaciar LIR Code emitter
ava . —
— translator | gl —Lexe] LR
mﬁ:éﬁfe] 1A-64 LIR l
La-64 | -
Code emitter
v ;
Legend: Low-lavel jli%':;:;r un-time info Run-time
optimizer ccheduler (GC map...) support

I:I processor-independent components

|:| 1A-32/Intel® 64 back-end

I:I 14-64 back-end

Developing a competitive JVM in
Open Source 21

Jitrino.JET — baseline compiler

o Simple: no internal representation, just 2 passes
over bytecode

o Small: —500K code, —14K NSLOCs

o Fast: Compilation speed — 10-20K methods per
second (1.5Ghz laptop)

o Supports JVMTI, VMMagic and can easily be
modified to support new features

o Produces more then 10 times faster code than the
interpreter (and —2 times slower than the code
made by Jitrino.OPT)

Developing a competitive JVM in
Open Source 22

Jitrino.JET: log sample

Java method:

public static int max(int x, int y) {
return Xx >y ? X I Vy;

+
Prologue: <store all callee-save registers in use>
T 0) ILOAD O
;s 1) I1LOAD 1
;s 2) IF_ICMPLE ->0<-
Ox03EBOOB6 cmp ebx, esi
Ox03EBOOB8 jle dword Ox11
T 5) ILOAD O
e 6) GOTO ->10<-
OxXO3EBOOBE mov [ebp+OxfFffffl4d], ebx
Ox03EBOOC4 jmp Oxb
T 9) ILOAD 1
OxX03EBOOC9 mov [ebp+OxFfffffl4d], esi
;> 10) IRETURN
OxXO3EBOOCF mov eax, [ebp+OxFfffffl4]
Epilogue: <restore all callee-save register in use>

Developing a competitive JVM in
Open Source

Jitrino.OPT - optimizing compller

o The fast, aggressively optimizing compiler

O Features:

High- and low-level intermediate representations
o Most optimizations run at the platform-independent high level

Supports edge and value profiles
Pipeline Management Framework

A flexible logging system enables tracing of major
Jitrino activities, including detailed IR dumps during

compilation

Developing a competitive JVM in
Open Source 24

Jitrino.OPT optimizations

o Guarded devirtualization
o Global Code Motion

o Escape Analysis based optimizations:
Synchronization elimination
Scalar replacement

o Array initialization/copying optimizations
o Array bounds check elimination

...and many other most known
optimizations

Developing a competitive JVM in
Open Source

25

Advanced optimizations

o VM Magics and helper inlining

Allow developers to write performance critical code
In Java using address arithmetic and low-level
compiler intrinsics.

o Value profile guided devirtualization

Effectively de-virtualize not only virtual but also
interface and abstract calls

o Lazy exceptions

Create exception objects on demand, i.e. only if it’s
actually used in the exception handler

Developing a competitive JVM in
Open Source 26

Helper: Bump-Pointer Allocation

@Inline
public static Address alloc(int objSize, int allocationHandle) {
Address TLS BASE = VMHelper.getTlsBaseAddress();

Address allocator_addr = TLS BASE.plus(TLS_GC_OFFSET);
Address allocator = allocator_addr.loadAddress();
Address free_addr = allocator.plus(0);

Address free = free_addr.loadAddress();

Address ceiling = allocator.plus(4).loadAddress();

Address new_free = free.plus(objSize);

ifT (new_free.LE(ceiling)) {
free_addr.store(new_free);
free.store(ailocationHandie);
return free;

}

return VMHelper.newResolved (objSize, allocationHandle);

Developing a competitive JVM in
Open Source

Pipeline Management Framework

<
PRIF M Ee3ER SR agability, veh L?Assa'\\l 2

n n C- - l)
Nested pipelines $

Full control over the pipeline steps and their options
through the Java property mechanism

Rich control over the logging based on JIT instances,
pipelines, class and method filters

o PMF detalls:

http://harmony.apache.org/subcomponents/drivm/JIT PM
F.html

Developing a competitive JVM in
Open Source 28

Jitrino.OPT internal profiler

The internal profiler (iprof) in the Jitrino.OPT compiler
can instrument the code so that per-method counters
of the instructions executed at run time will be {

dumped.
o To use iprof you need to create the iprof.cfg configuration

file with the profiler’s configuration and specify the following
option: -XX:jit.arg.codegen.iprof=on

o An example of the iprof output:

Method name Insts ByteCodeSize MaxBBExec HottestBBNum

jJava/lang/Thread.<clinit> 7 13 1 2
java/lang/Object.<init> 6445 1 6445 2
jJava/lang/Thread.<init> 2440 257 24 0

Developing a competitive JVM in
Open Source 29

JIT Resources

o Execution Manager:
http://harmony.apache.org/subcomponents/drivm/EM.html

o Jitrino JIT Compiler:
http://harmony.apache.org/subcomponents/drivm/JIT.html

o Pipeline Management Framework and Jitrino logging system:

http://harmony.apache.org/subcomponents/drivm/JIT_PMF.h
tml

o Jitrino.OPT internal profiler:

http://harmony.apache.org/subcomponents/drlvm/internal p
rofiler.html

o Harmony performance reports:
http://harmony.apache.org/performance.html

Developing a competitive JVM in
Open Source 30

Agenda

O O O O O

About the Harmony project
Harmony DRLVM

Garbage Collectors in DRLVM
DRLVM Execution Engines
Summary

Developing a competitive JVM in
Open Source

31

Summary

o Harmony DRLVM is a product-quality VM
being developed in Open Source

o DRLVM benefits from its modularity and
pluggability In

Development, research and testing

o DRLVM provides a competitive
performance with its advanced JIT and
GC implementations

Developing a competitive JVM in
Open Source 32

What’s in this for me

o Build your research projects taking
advantage of DRLVM modular design

o Use Harmony DRLVM to run your product

o Reuse parallel Garbage Collector, Classlib
or JIT

o Contribute to the Harmony project with
your ideas and energies

Developing a competitive JVM in
Open Source 33

Resources

o Harmony project:
http://harmony.apache.orqg

o Project downloads:
http://harmony.apache.org/download.cqi

o DRLVM Developer’s Guide:

http://harmony.apache.org/subcomponents/drivm/developers qu
ide.html

o Debugging DRLVM

http://harmony.apache.org/subcomponents/drivm/debugging V
M and JIT.html

o How to write GC for DRLVM:
http://harmony.apache.org/subcomponents/drivm/qgc-howto.html

Developing a competitive JVM in
Open Source 34

Thanks!

Q&A

