
© 2007, Rick Kazman

Analysis and Management of Software Architectures 1

Analysis and Management of

Software Architectures:

Design it Right, Build it Right

Rick Kazman

Rick.Kazman@gmail.com
Software Engineering Institute/CMU

and University of Hawaii

Part 1: Software Architecture

Design

© 2007, Rick Kazman

Analysis and Management of Software Architectures 2

Axioms of The Architecture-Centric
Approach

1. The software architecture of a system is the fundamental
artifact that guides development.

2. Systems are built to satisfy business goals.

3. Architecture design is based on a set of architecturally
significant requirements, derived from business goals.

4. Quality attribute requirements exert the strongest influence
on architectural design.

5. Architecture design can be made tractable by considering a
small number of primitives, called tactics.

6. Architecture design can and should be guided by analysis.

7. Architectures are developed by people within an
organizational/business context; so economic and
organizational concerns shape and constrain architecture.

Why Is Software Architecture Important?

The right architecture paves the way for system success.

The wrong architecture usually spells some form of disaster.

Represents earliest
design decisions

• hardest to change
• most critical to get right
• communication vehicle

among stakeholders

First design artifact

addressing

• performance
• modifiability

• reliability
• security

Key to systematic reuse
• transferable,

reusable abstraction

Axiom 1: The software architecture of a system is the
fundamental artifact that guides development.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 3

What Is Design and Analysis?

Design is making the decisions that lead to the

creation of architecture.

� Which design decisions will lead to a software architecture
that successfully addresses the desired system qualities?

Analysis ensures that the architecture used is the right

one.

� How do you know if a given software architecture is
deficient or at risk relative to its target system qualities?

Implications for Software Architecture
Design and Analysis - 1

The degree to which a system meets its quality

attribute requirements is dependent on architectural

decisions.

Consequences:

� These quality attributes should be designed into the
architecture.

Caveats:

� A change in structure improving one quality often affects
the other qualities.

� Architecture can only permit, not guarantee, any quality
attribute.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 4

Implications for Software Architecture
Design and Analysis - 2

To be effective, the architecture-centric design
and analysis activities must
� directly link to business and mission goals

� explicitly focus on quality attributes

� explicitly involve system stakeholders

Sounds obvious. But how do we ensure this
occurs?

We need methods, processes, and tools that
enforce the axioms.

The Design and Analysis Process

� Inception Activities

� Identify key stakeholders

� Identify business objectives of
the stakeholders.

� Prioritize business objectives.

� Design Activities

� Identify, describe, and prioritize
architecturally significant

requirements (ASRs).

� Design and document the

architecture.

� Validate the design decisions.

� Review Activities

� Identify, describe, and prioritize

ASRs.

� Identify architecture

description.

� Analyze architecture
description against ASRs.

� Post-Review Activities

� Summarize findings and review
them with architecture owners.

� Plan architecture

improvements.

� Refine review methods.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 5

Inception Activities - 1

� Identify key stakeholders

� Identify business objectives of the

stakeholders.

� Prioritize business objectives.

Stakeholders often find expressing and/or
prioritizing their business goals to be difficult.

Axiom 2: Systems are built to satisfy business goals.

Inception Activities - 2

Mining architectural analyses, we have created
a taxonomy of business goals to aid in
stakeholder elicitation and facilitation:

Business Goals

Improve
capability/
quality of
system

Improve
market
position

Reduce total
cost of

ownership

Improve
confidence in

and perception
of the system

Support
improved
business

processes

© 2007, Rick Kazman

Analysis and Management of Software Architectures 6

Inception Activities - 3

Each of these categories is broken down into
sub-categories, e.g.:
� Reduce Total Cost of Ownership:

� reduce cost of development

� reduce cost of deployment and operations

� reduce cost of maintenance

� reduce cost of retirement/moving to a new system

…and sub-sub-categories, e.g.:
� reduce cost of deployment and operations

� ease of installation

� ease of repair

Inception Activities - 4

These business goals must be prioritized.

But such goals are too vague for construction
and analysis.

So we need to delve more deeply…

© 2007, Rick Kazman

Analysis and Management of Software Architectures 7

The Design and Analysis Process

� Inception Activities

� Identify key stakeholders

� Identify business objectives of
the stakeholders.

� Prioritize business objectives.

� Design Activities

� Identify, describe, and prioritize

architecturally significant

requirements (ASRs).

� Design and document the
architecture.

� Validate the design decisions.

� Review Activities

� Identify, describe, and prioritize
ASRs.

� Identify architecture
description.

� Analyze architecture
description against ASRs.

� Post-Review Activities

� Summarize findings and review
them with architecture owners.

� Plan architecture

improvements.

� Refine review methods.

Architecturally Significant Requirements

But where do we get ASRs from?

Stakeholder thinking about ASRs is often fuzzy.

One answer: a Quality Attribute Workshop

Axiom 3: Architecture design is based on a set of
architecturally significant requirements, derived from
business goals.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 8

Quality Attribute Workshop (QAW)

The QAW is a facilitated method that engages system

stakeholders early in the life cycle to discover the

driving quality attribute requirements

of a software-intensive system.

Key points about the QAW are that it is

� system-centric

� stakeholder focused

� scenario based

� used before the software architecture has been created

QAW Steps

1. QAW Presentation and Introductions

2. Business/Programmatic Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

© 2007, Rick Kazman

Analysis and Management of Software Architectures 9

Step 1: QAW Presentation and
Introductions

QAW Presentation

� QAW facilitators describe the motivation for the

QAW and explain each step of the method.

Introductions

� QAW facilitators introduce themselves to the

stakeholders.

� Stakeholders introduce themselves and briefly

describe their background and relationship to the

system.

Step 2: Business/Programmatic
Presentation

A representative from the system stakeholder
community presents the system’s business and/or
programmatic drivers.
� business/programmatic context for the system
� high-level functional requirements
� high-level constraints
� high-level quality attribute requirements
� plan for development

Facilitators capture information that
may shed light on the quality attribute
drivers.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 10

Step 3: Architectural Plan Presentation

The system architect presents the architecture
development plans including

� key business/programmatic requirements

� key technical requirements and constraints that

will drive architectural decisions, such as

� mandated operating systems, hardware, middleware,
and so forth

� other systems with which the system must interact

� existing context diagrams, high-level system

diagrams, and descriptions

Step 4: Identification of Architectural
Drivers
The QAW facilitators identify the architectural drivers

that are key to realizing quality attribute goals. QAW

facilitators

� present a distilled list of the architectural drivers they heard
during the Business/Programmatic Presentation and the
Architecture Plan Presentation

� ask for clarifications, additions, and/or deletions from the
stakeholders to reach a consensus on the distilled list of
architectural drivers

The final list of architectural drivers help focus the

stakeholders during scenario brainstorming.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 11

Step 5: Scenario Brainstorming

Stakeholders generate scenarios using a
facilitated brainstorming process.

Each stakeholder generates a scenario in
round-robin fashion or may opt to pass.

Depending on the number of stakeholders
in the QAW and the allocated time for the
workshop, stakeholders may have an
opportunity to contribute one or more
scenarios.

Describing Quality Attributes

Quality attribute names by themselves are

not enough: performance, modifiability,

security, …

Heated (and pointless) debates often

revolve around the quality attribute to

which a particular system behavior

belongs.

The vocabulary describing quality attributes

varies widely.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 12

Quality Attribute Scenarios – 1

A solution to the problem of describing quality
attributes is to use quality attribute scenarios

to better characterize them.

A quality attribute scenario is a short
description of how a system is required to
respond to some stimulus.

Quality Attribute Scenarios – 2

A quality attribute scenario consists of six parts:

1. source – an entity that generates a stimulus

2. stimulus – a condition that affects the
system

3. artifact – the part of the system that was
stimulated by the stimulus

4. environment – the condition under which
the stimulus occurred

5. response – the activity that results because
of the stimulus

6. response measure – the measure by which
the system’s response will be evaluated

© 2007, Rick Kazman

Analysis and Management of Software Architectures 13

Parts of a Quality Attribute Scenario

1
2
3

4

Response
MeasureEnvironment

Artifact:

Process, Storage,
Processor,
Communication

Stimulus

Response

Source

Guidance on Scenario Brainstorming

We focus on eliciting three types of scenarios:

� use cases – anticipated uses of the system

� growth – anticipated changes to the system

� exploratory – unanticipated stresses to the system (uses
and/or changes)

Well-formed scenarios have: a stimulus, an

environment, and a response specified.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 14

Stimuli, Environment, Responses

Use case scenario

A remote user requests a database report via the Web
during a peak period and receives it within 5 seconds.

Growth scenario

Add a new data server to reduce latency in Scenario 1
to 2.5 seconds within 1 person-week.

Exploratory scenario

Half of the servers go down during normal operation
without affecting overall system availability.

These scenarios are “falsifiable hypotheses”.

Step 6: Scenario Consolidation

The QAW facilitators ask stakeholders to

identify scenarios that are similar in content.

� Similar scenarios are merged to prevent a

“dilution” of votes when voting is done.

� QAW facilitators attempt to reach a consensus

with the stakeholders before merging scenarios.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 15

Example Scenario Consolidation

Scenarios that are similar in content are
grouped together, e.g.

� In the event of a processor fault, the system can

be rebooted/reinitialized.

� A processor failure or crash doesn’t adversely

affect any other components.

� Software continues to operate even if the host

fails.

Step 7: Scenario Prioritization

Each stakeholder is then allocated votes (30%
of the number of scenarios generated).

� Voting occurs in two rounds; each stakeholder will

“spend” half of the votes in each round.

� Stakeholders can spend any number of votes on

any scenario they like.

� Votes are counted and the scenarios are

prioritized.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 16

Step 8: Scenario Refinement

The top scenarios are further refined. The number of
scenarios refined depends on the time available.
� Typically the top five scenarios are refined.

For each scenario, the QAW facilitators further
elaborate and document the following:
� business/mission goals affected by the scenario

� description of relevant quality attributes

� list of questions with respect to the scenarios that
stakeholders would like to pose

� any issues that may arise during the scenario refinement

QAW Steps

1. Introductions and QAW Presentation

2. Business/Programmatic Presentation

3. Architecture Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

Iterate as necessary with a broader
or different stakeholder community.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 17

QAW Conceptual Flow

Scenario
Refinement

Scenarios

Refined Scenarios

Quality
Attributes

Business
Drivers

Architectural
Plan

QAW Results/Outputs

Increased stakeholder communication

Clarified quality attribute requirements

Informed basis for architectural design
decisions

© 2007, Rick Kazman

Analysis and Management of Software Architectures 18

The Design and Analysis Process

� Inception Activities

� Identify key stakeholders

� Identify business objectives of
the stakeholders.

� Prioritize business objectives.

� Design Activities

� Identify, describe, and prioritize
architecturally significant
requirements (ASRs).

� Design and document the

architecture.

� Validate the design decisions.

� Review Activities

� Identify, describe, and prioritize
ASRs.

� Identify architecture
description.

� Analyze architecture
description against ASRs.

� Post-Review Activities

� Summarize findings and review
them with architecture owners.

� Plan architecture

improvements.

� Refine review methods.

Software Architecture Design

The design for a system consists of a collection of

decisions.

Design is the process of making decisions.

Decisions made early constrain ones made later.

So…

make decisions early that have the farthest reaching

impact.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 19

Software Architecture Design Decisions

Categories:

� Coordination model

� Data and object model

� Allocation of functionality

� Management of resources

� Binding time decisions

� Mapping among architectural elements

Coordination Model

What are the communication mechanisms
between the system and external entities?

What are the inter-element communication
mechanisms and what are their properties
(e.g., synchronous, asynchronous, hybrid
coupling)?

What are the intra-element communication
mechanisms?

© 2007, Rick Kazman

Analysis and Management of Software Architectures 20

Data and Object Model

What abstraction mechanisms are used?

What are the data models on which element
communication depend?

Allocation of Functionality

What are the major categories of system use?

What are the major modes of operation?

How is functionality divided and assigned to
software elements?

© 2007, Rick Kazman

Analysis and Management of Software Architectures 21

Management of Resources

How much do system elements know about
time?

What process/thread models will be employed?

What scheduling strategies will be employed?

What resources need to be managed?

What are the resource limits?

Binding Time Decisions

How and where are execution dependencies among

elements resolved?

Which elements are stateful or stateless?

How are different variants of a system to be managed?

� Compile time (e.g., compiler switches)

� Build time (e.g., replace modules, pick from library)

� Load time (e.g., dynamic link libraries [DLLs])

� Initialization time (e.g., resource files)

� Run time (e.g., load balancing)

© 2007, Rick Kazman

Analysis and Management of Software Architectures 22

Mapping Among Architectural Elements

What execution dependencies exist among
elements?

How do elements in different architectural
structures map to each other, e.g.

� How are modules mapped to runtime elements?

� How are runtime elements mapped to

processors?

Architectural Drivers

Designing to satisfy all of the requirements at once is

too difficult.

Some requirements have more influence than others
on the architecture.

Architectural drivers are the combination of functional
requirements, quality attribute requirements, and
constraints that “shape” the architecture or the
particular element under consideration.

Axiom 4: Quality attribute requirements exert the
strongest influence on architectural design.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 23

How Are Early Design Decisions Made?

Early software architecture design decisions are made

in the context of architectural drivers.

For each decision, consider whether the decision

impacts any of the architectural drivers – either

supports them or hinders them.

For example, consider the early design decisions

associated with the Coordination model and the

communication mechanisms between the system

and external entities …

What Are the Communication
Mechanisms?

� Availability

� Does the mechanism have to
support failure of the external
entity?

� Does the mechanism have to
guarantee delivery?

� Modifiability

� Will the external entity change?

� Will the information being
communicated change?

� Performance

� Is the communication with the
external entity sensitive to
system latency or throughput?

� Security

� Is the communication with the
external entity subject to a
threat?

� Testability

� How will the communication be
tested?

� Can the communication be
played back for testing?

� Usability

� If the external entity is a user,
are any of the usability cross-
cutting scenarios relevant?

How would quality attributes enter into this decision?

© 2007, Rick Kazman

Analysis and Management of Software Architectures 24

Software Architecture Design Workflow

Identify problem to solve.
� Characterize the quality attribute.

� Determine importance and difficulty.

� Analyze existing architectural approaches.

Identify the solution options.
� Generate hypotheses – patterns/tactics that might solve the

problem.

Make design decisions.

� Assess options – Select patterns/tactics and apply them.

� Rework architecture.

Manage design decisions.

� Manage backlog of problems, solution options, etc.

� Ensure consistency as decisions change.

Tactic-Based Approach to Design

In each design round we follow the software
architecture design workflow:

� Identify problem to solve: Pick one or more quality
attributes identified as the architectural drivers.

� Identify the solution options: Determine patterns/tactics
associated with quality attributes and constraints.

� Make design decisions: Select patterns/tactics, apply and
document them, and make additional design decisions.

We build our design concept iteratively applying
patterns, tactics, and design decisions.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 25

Making Design Decisions

The core of the design process consists of the
designer generating a hypothesis and then
testing that hypothesis against some criteria.
� If the hypothesis does not pass the test, another

hypothesis is generated and tested.

Tactics have a role in
� the validating of a design against criteria

� the generation of hypotheses

Let’s examine tactics in detail, using availability
and performance as examples.

Tactics – 1

The design for a system consists of a collection of

design decisions:

� Some decisions are intended to ensure the achievement
of the system’s functionality.

� Other decisions are intended to help control the quality
attribute responses.

All of these decisions are tactics:

� A tactic is a design decision that is influential in the control
of a quality attribute response.

Axiom 5: Architecture design can be made tractable
by considering a small number of primitives, called
tactics.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 26

Tactics – 2

Each tactic is a design option for the architect.
� For example, to promote availability, we might choose the

Redundancy tactic.

One tactic can refine another tactic. For example,
redundancy could be refined to data and/or
computational redundancy tactics.

Patterns package tactics. For example, a pattern that
supports availability will likely use the Redundancy
tactic to achieve some level of availability.

Tactics to
Control

Response

Stimulus Response

Fault Fault Masked or Repair Made

Availability
example

Availability Tactics – 1

Fault detection

� Ping/Echo: when one component issues a ping

and expects to receive an echo within a

predefined time from another component

� Heartbeat: when one component issues a

message periodically while another listens for it

� Exception: using exception mechanisms to raise

faults when an error occurs

© 2007, Rick Kazman

Analysis and Management of Software Architectures 27

Availability Tactics – 2

Fault recovery preparation and repair

� Voting: when processes take equivalent input and

compute output values that are sent to a voter

� Active Redundancy: when redundant components

are used to respond to events in parallel

� Passive Redundancy: when a primary component

responds to events and informs standby

components of the state updates they must make

� Spare: when a standby computing platform is

configured to replace failed components

Availability Tactics – 3

Fault recovery and reintroduction

� Shadow Operation: running a previously failed

component in “shadow mode” before it is returned

to service

� State Resynchronization: saving a state

periodically and then using it to resynchronize

failed components

� Checkpoint/Rollback: recording a consistent state

that is created periodically or in response to

specific events

© 2007, Rick Kazman

Analysis and Management of Software Architectures 28

Availability Tactics – 4

Fault prevention

� Removal from Service: removing a system component from
operation so it can undergo some procedure that will help it
avoid failure in the future (e.g., rebooting a component
prevents failures caused by memory leaks)

� Transactions: the bundling of several sequential steps such
that the entire bundle can be undone at once

� prevents data from being affected if one step in a process fails

� prevents simultaneous access to data by concurrent threads

� Process Monitor: Monitoring processes are used to monitor
critical components, remove them from service. and
re-instantiate new processes in their place.

Summary of Availability Tactics

Availability

Fault

Detection

• Ping/Echo
• Heartbeat
• Exception

Fault
Recovery

Preparation
and Repair

• Voting
• Active

Redundancy
• Passive

Redundancy
• Spare

Fault Recovery
and

Reintroduction

Fault

Prevention

• Shadow Operation
• State

Resynchronization

• Checkpoint/
Rollback

• Removal from

Service

• Transactions

• Process
Monitor

Fault

Fault
masked

or
repair
made

© 2007, Rick Kazman

Analysis and Management of Software Architectures 29

Thinking About Performance - 1

The goal of performance tactics is to generate
a response to an event arriving at the system
within some time constraint.

Two basic contributors to the response time are
resource consumption and blocked time.

After an event arrives, either the system is
processing on that event or the processing is
blocked for some reason.

Thinking About Performance - 2

Resource consumption
� Resources include central processing unit (CPU),

data stores, network communication bandwidth,
and memory.

Blocked time
� A computation can be blocked from using a

resource because
� there is contention for the resource,

� the resource is unavailable, or

� the computation depends on the result of other
computations that are not yet available.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 30

Queuing Model for Performance

Arrivals

Queue

Server

Results

Parameters:

• Arrival rate

• Queuing discipline

• Scheduling algorithm

• Service time

• Topology

• Network bandwidth

• Routing algorithm

Latency (time to compute
results) can only be affected
by changing one of the
parameters.

Scheduling
algorithm

Routing of
messages

Managing Performance

Architectural means for controlling the parameters of a

performance model:
� Arrival rate – restrict access, differential rate/charging structure

� Queuing discipline – first-come first served (FCFS), priority

queues, etc.

� Service time

� Increase efficiency of algorithms.

� Cut down on overhead (reduce inter-process communication, use
thread pools, use pool of DB connections, etc.).

� Use faster processor.

� Scheduling algorithm – round robin, service last interrupt first, etc.

� Topology – add/delete processors

� Network bandwidth – faster networks

� Routing algorithm – load balancing

© 2007, Rick Kazman

Analysis and Management of Software Architectures 31

Performance Tactics - 1

Performance tactic categories and their goals:

� Resource demand – Reduce or manage the

demand for resources.

� Resource management – Manage resources even

though the demand for resources is not

controllable.

� Resource arbitration – Control contention for

resources through scheduling.

Performance Tactics - 2

Performance

Resource
Demand

• Increase Computation

Efficiency

• Reduce Computational

Overhead

• Manage Event Rate

• Control Frequency of

Sampling

Resource
Management

• Introduce

Concurrency

• Maintain Multiple

Copies

• Increase Available
Resources

Resource
Arbitration

• Scheduling Policy

• Synchronization Policy

© 2007, Rick Kazman

Analysis and Management of Software Architectures 32

Tactics and Patterns - 1

Tactics can be implemented using patterns:
�Reduce computational overhead.

� Introduce concurrency and scheduling policy.

Shared Memory Pattern

Other application

responsibilities

Prioritized
Threads
Pattern

Responsibilities related

to the deadline Have a higher

priority than

Information

Manager

Application Application

Shared

Memory

Tactics and Patterns - 2

A tactic is a design decision that is influential in the
control of a single quality attribute response.

A pattern is a prepackaged solution to a recurring
problem that resolves multiple forces.

Where to find patterns:
� Design Patterns: Elements of Reusable Object Oriented

Software

� Pattern-Oriented Software Architecture

� Core J2EE Patterns

� Hillside Group Pattern Library

� Conference on Pattern Languages of Programs (PLoP)

© 2007, Rick Kazman

Analysis and Management of Software Architectures 33

Finding a Solution

Problem &
Context

Solution

Pattern Name

Consequences

Patterns typically have at
least these four parts.

If you have a pattern in mind
for your problem, use it.

Use tactics when you need help coming up with a pattern,
when an existing pattern isn’t quite right and you need to
tailor it, or when you want to validate the choice of a pattern.

A tactic is a design step, transforming
the architecture to address a quality
attribute of interest.

Ideal Tactic Definition Process

Begin with an analytic model for the quality
attribute of concern.

Identify parameters of that model.

Identify architectural techniques to manipulate
the parameters of the model.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 34

The World Is Not Ideal

Analytic models exist for performance,
modifiability, and partially for a few other
quality attributes.

What do we do if there is no analytic model?

Interview experts in achieving the particular
quality attribute and abstract the responses.

What Lists of Tactics Exist?

We have lists for

� Availability

� Modifiability

� Performance

� Security

� Testability

� Usability

See

for more information

© 2007, Rick Kazman

Analysis and Management of Software Architectures 35

Software Architecture Design Example

We will now use an example to illustrate the software
architecture design workflow.

Example: Web E-Commerce

� System context: Internet

� Technical environment: e-commerce reference

architecture

� Initial pattern: canonical e-commerce three-tier

architecture

Browser/User
Interaction

Data
Services

Business Rules
and Applications

Key:

Component

Data Flow

© 2007, Rick Kazman

Analysis and Management of Software Architectures 36

Web E-Commerce Architectural Drivers

� Modifiability First Design Round

� Security Second Design Round

� High performance

� Scalability Third Design Round

� High availability

First Design Round: Problem to Solve

Modifiability: E-commerce Web sites change
frequently, in many cases daily, so their
content must be very simple to change.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 37

First Design Round: Patterns and Tactics

� Tactics

� Abstract common
services

� Semantic coherence

� Use an intermediary

� Maintain existing
interfaces

� How Achieved
� Separation of browser

functionality,
database, and
business logic into
distinct tiers.

The e-commerce pattern provides modifiability by
virtue of separation of responsibilities into distinct
tiers.

However, when later analyzing the architecture, it is
helpful to understand the underlying tactics.

First Design Round: Design Decisions

The e-commerce pattern does not exempt the
architect from having to make other early
design decisions such as

� state management (which elements are stateful

and which are stateless).

This affects whether clients are “thick” or “thin”
the choice to use cookies, etc.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 38

First Design Round: Design Concept

Web

Browser

Web

Browser

Web

Browser

Browser/User
Interaction

:

Application

Server

Database

Server

Business Rules and Applications Data
Services

Key: UML

Web E-Commerce Architectural Drivers

� Modifiability First Design Round

� Security Second Design Round

� High performance

� Scalability Third Design Round

� High availability

© 2007, Rick Kazman

Analysis and Management of Software Architectures 39

Second Design Round: Problem to Solve

� Security. Users must be assured that any
sensitive information they send across the
Web is secure from snooping. Operators of
Web sites must be assured that their system
is secure from attack (stealing or modifying
data, rendering data unusable by flooding it
with requests, crashing it, etc.).

Second Design Round: Tactics

� Tactics

� Limit access

� Maintain integrity

� Limit exposure

� Maintain data
confidentiality

� How Achieved

� Router/Firewall

� Encryption across public
networks (HTTPS)

© 2007, Rick Kazman

Analysis and Management of Software Architectures 40

Second Design Round: Design Concept

Database

Server

Web

Browser

Web

Browser

Web

Browser

Browser/User
Interaction

:

Application

Server

Business Rules and Applications Data
Services

Key: UML

Router/

Firewall

HTTPS

Web E-Commerce Architectural Drivers

� Modifiability First Design Round

� Security Second Design Round

� High performance

� Scalability Third Design Round

� High availability

© 2007, Rick Kazman

Analysis and Management of Software Architectures 41

Third Design Round: Problem to Solve

High performance. A popular Web site will typically

have tens of millions of “hits” per day, and users

expect low latency from it. Customers will not

tolerate the site simply refusing their requests.

Scalability. As Web sites grow in popularity, their

processing capacity must be able to similarly grow,

to both expand the amount of data they can manage

and maintain acceptable levels of customer service.

High availability. E-commerce sites are expected to

be available “24/7.” They never close, so must have

minimal downtime-perhaps a few minutes a year.

Third Design Round: Patterns and Tactics

� Tactics
� Introduce

Concurrency

� Maintain Multiple
Copies

� Increase Available
Resources

� Scheduling Policy

� How Achieved
� Replicated servers

� Load balancing

To achieve high performance and availability in the e-
commerce architecture we need to make some
further architectural changes.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 42

Third Design Round: Design Concept

Web

Browser

Web

Browser

Web

Browser

Browser/User
Interaction

Load

Balancer

Router/

Firewall

Proxy

Server

:

Web

Server

Web

Server

Web

Server

:

Application

Server

Application

Server

:

Database

Server

Database

Server

Business Rules and Applications Data
Services

Key: UML

The Design and Analysis Process

� Inception Activities

� Identify key stakeholders

� Identify business objectives of
the stakeholders.

� Prioritize business objectives.

� Design Activities

� Identify, describe, and prioritize
architecturally significant

requirements (ASRs).

� Design and document the

architecture.

� Validate the design decisions.

� Review Activities

� Identify, describe, and prioritize

ASRs.

� Identify architecture

description.

� Analyze architecture
description against ASRs.

� Post-Review Activities

� Summarize findings and review
them with architecture owners.

� Plan architecture

improvements.

� Refine review methods.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 43

Validate Design Decisions

Design and analysis are two sides of the same
coin.

To validate a design, it must be analyzed.

That is the subject of the next part of the
workshop…

Axiom 6: Architecture design can and should be
guided by analysis.

Interim Summary

Make important decisions early. Software
architecture focuses on design decisions that
help control a quality attribute response.

Choose the most influential (few) ASRs on which to
focus. These are the “architectural drivers.”

Choose a pattern, if you can find one, and then
adjust the pattern based on tactics.

decisions

(patterns, tactics)

quality attribute

requirements

(drivers)

early design
decisions

(options)

© 2007, Rick Kazman

Analysis and Management of Software Architectures 44

Part 2: Software Architecture

Analysis

The Design and Analysis Process

� Inception Activities

� Identify key stakeholders

� Identify business objectives of
the stakeholders.

� Prioritize business objectives.

� Design Activities

� Identify, describe, and prioritize
architecturally significant

requirements (ASRs).

� Design and document the

architecture.

� Validate the design decisions.

� Review Activities

� Identify, describe, and prioritize

ASRs.

� Identify architecture

description.

� Analyze architecture

description against ASRs.

� Post-Review Activities

� Summarize findings and review
them with architecture owners.

� Plan architecture

improvements.

� Refine review methods.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 45

Why Evaluate an Architecture?

Because so much depends on it!

� An unsuitable architecture will precipitate disaster.

� Architecture determines the structure of the project.

Because we can!

� Repeatable, structured methods offer a low-cost risk
mitigation capability that can be employed early in the
development life cycle.

� Making sure an architecture is the right one simply makes
good sense.

Architecture evaluation should be a standard part of

every architecture-based development methodology.

Evaluation Techniques

� Questioning techniques use
questionnaires, checklists,
and scenarios to investigate
the way an architecture
addresses it quality
requirements.

� Measuring techniques apply
some measurement tool to
a software artifact.

� Our focus today, a hybrid
technique: the ATAM

� These are all described in:

© 2007, Rick Kazman

Analysis and Management of Software Architectures 46

Pedigree of the ATAM

The ATAM has existed for over 10 years.
� Well-defined, documented process.

� Books, courses focused on the ATAM.

It has been used in countless evaluations
by major companies and government
organizations:
� Boeing, Raytheon, GM, Ford, US Army, Siemens,

Fidelity Investments, Bosch, Pitney-Bowes, HP,
General Dynamics, Philips, Visteon, Wells Fargo,
UPS, Daimler, Mellon Financial, …

The ATAM

The purpose of the ATAM is to assess the
consequences of architectural decisions in light of
quality attribute requirements and business goals.

The ATAM brings together three groups in an
evaluation:
� a trained evaluation team

� an architecture’s “decision makers” (architect, senior
designers, project managers, customers)

� representatives of the architecture’s stakeholders

© 2007, Rick Kazman

Analysis and Management of Software Architectures 47

Purpose of the ATAM

The ATAM is a method that helps stakeholders ask the
right questions to discover potentially problematic
architectural decisions.

Discovered risks can then be made the focus of
mitigation activities such as further design, further
analysis, and prototyping.

Surfaced tradeoffs can be explicitly identified and
documented.

The purpose is NOT to provide precise analyses . . .
the purpose IS to discover any risks created by
architectural decisions.

ATAM Phases

ATAM evaluations are conducted in four phases.

Phase 0:
Partnership

and
Preparation

Duration: varies

Meeting: primarily

phone, email

Phase 1:
Initial

Evaluation

Phase 2:
Complete
Evaluation

Duration: 1.5 - 2 days each for

Phase 1 and Phase 2

Meeting: typically conducted

at customer site

Phase 3:
Follow-Up

Duration: varies

Meeting: primarily

phone, email

© 2007, Rick Kazman

Analysis and Management of Software Architectures 48

ATAM Phase 0

Phase 0 precedes the technical part of the
evaluation:

� The customer and a subset of the evaluation team

exchange their understanding about the method

and the system whose architecture is to be

evaluated.

� An agreement to perform the evaluation is worked

out.

� A core evaluation team is fielded.

ATAM Phase 1

Phase 1 involves a small group of predominantly
technically oriented stakeholders.

Phase 1 is

� architecture-centric

� focused on eliciting detailed architectural

information and analyzing it

� top-down analysis

© 2007, Rick Kazman

Analysis and Management of Software Architectures 49

ATAM Phase 1 Steps

1. Present the ATAM

2. Present business drivers

3. Present architecture

4. Identify architectural approaches

5. Generate quality attribute utility tree

6. Analyze architectural approaches

7. Brainstorm and prioritize scenarios

8. Analyze architectural approaches

9. Present results

Phase 1

Step 1: Present the ATAM

The evaluation team presents an overview of
the ATAM including:
� ATAM steps in brief

� Techniques
� utility tree generation

� architecture elicitation and analysis

� scenario brainstorming/mapping

� Outputs
� architectural approaches

� utility tree and scenarios

� risks, non-risks, sensitivity points, and tradeoffs

© 2007, Rick Kazman

Analysis and Management of Software Architectures 50

Step 2: Present Business Drivers

The customer representative describes the
system’s business drivers including its

� business context

� high-level functional requirements

� high-level quality attribute requirements

� architectural drivers: quality attributes that “shape” the
architecture

� critical requirements: quality attributes
most central to the system’s success

Step 3: Present Architecture

The architect presents an overview of
the architecture including
� technical constraints such as an operating

system, hardware, or middleware prescribed for
use

� other systems with which the system must interact

� architectural approaches used to address quality
attribute requirements

The evaluation team begins probing for
and capturing risks.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 51

Step 4: Identify Architectural Approaches

Identify predominant architectural approaches
such as
� client-server

� 3-tier

� watchdog

� publish-subscribe

� redundant hardware

The evaluators begin to identify places in the
architecture that are key to realizing quality
attribute goals.

Step 5: Generate Quality Attribute Utility
Tree

Identify, prioritize, and refine the most important

quality attribute goals by building a utility tree.

� A utility tree is a top-down vehicle for characterizing the
“driving” attribute-specific requirements.

� The most important quality goals are the high-level nodes
(typically performance, modifiability, security, and
availability).

� Scenarios are the leaves of the utility tree.

The outputs of this step are a characterization and a

prioritization of specific quality attribute

requirements.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 52

Example Quality Attribute Utility Tree

L = Low, M = Medium, H = High

Utility

Performance

Modifiability

Availability

Security

Data
latency

Transaction
throughput

New
products

Change
COTS

H/W failure

COTS S/W

failures

Data

Data

confidentiality

integrity

Reduce storage latency on
customer DB to < 200 ms.

Deliver video in real time.

Add CORBA middleware
in < 20 person-months.

Change Web user interface
in < 4 person-weeks.

Power outage at site1 requires
traffic to be redirected to site 2

in < 3 seconds.

Network failure detected and
recovered in < 1.5 minutes.

Customer DB authorization
works 99.999% of the time.

Credit card transactions are
secure 99.999% of the time.

(L,M)

(M,M)

(H,H)

(H,L)

(H,H)

(H,H)

(H,M)

(H,L)

How Scenarios Are Used – 1

We use six-part scenarios as described earlier:

1. source – an entity that generates a stimulus

2. stimulus – a condition that affects the system

3. artifact – the part of the system that was stimulated by the
stimulus

4. environment – the condition under which the stimulus
occurred

5. response – the activity that results because of the stimulus

6. response measure – the measure by which the system’s
response will be evaluated

© 2007, Rick Kazman

Analysis and Management of Software Architectures 53

How Scenarios Are Used – 2

Recall…

Scenarios are used to

� represent stakeholders’ interests

� understand quality attribute requirements

Scenarios should cover a range of

� anticipated uses of the system (use case scenarios)

� anticipated changes to the system (growth scenarios)

� unanticipated stresses on the system (exploratory
scenarios)

Scenario Analysis Outputs

As each scenario is analyzed against the architecture,

the evaluation team identifies risks, non-risks

sensitivity points, and tradeoffs.

� A risk is a potentially problematic architectural decision.

� Non-risks are good architectural decisions that are
frequently implicit in the architecture.

� A sensitivity point is a place in the architecture that
significantly affects whether a particular quality attribute
response is achieved.

� A tradeoff is a property that affects more than one attribute
and is a sensitivity point for more than one attribute.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 54

Step 6: Analyze Architectural
Approaches

The evaluation team probes architectural

approaches from the point of view

of specific quality attributes to

identify risks.

The team

� identifies the architectural approaches

� asks quality-attribute-specific questions for the highest
priority scenarios

� identifies and records risks, non-risks, sensitivity points,
and tradeoffs

Risks and Tradeoffs

Example risk:

� Rules for writing business logic modules in the

second tier of your three-tier architecture are not

articulated clearly. This could result in the

replication of functionality, thereby compromising

the modifiability of the third tier.

Example tradeoff:

� Increasing the level of encryption will significantly

increase security but decrease performance.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 55

Sensitivity Points and Non-Risks

Example sensitivity point:

� The response time to system events is sensitive

to the number of processes running on the main

processor.

Example non-risk:

� Assuming message-arrival rates of no more than

once per second and a processing time of less

than 30 ms, the architecture should meet the 1-

second soft deadline requirement.

Scenario Analysis Template - Part 1

ATAM: Scenario Analysis

Scenario

Business Goal(s)

Attribute

Attribute

Concern

Stimulus

Stimulus Source

Environment

Artifact

Response

Scenario

Refinement

Response

Measure

© 2007, Rick Kazman

Analysis and Management of Software Architectures 56

Scenario Analysis Template - Part 2

Architectural

Decisions and

Reasoning

Risks 1.

Sensitivities 1.

Tradeoffs 1.

Non-Risks 1.

Other Issues 1.

ATAMPhase 2

Phase 2 involves a larger group of
stakeholders.

Phase 2 is

� stakeholder-centric

� focused on eliciting diverse stakeholders’ points of

view and on verifying the results of Phase 1

� bottom-up analysis

© 2007, Rick Kazman

Analysis and Management of Software Architectures 57

ATAM Phase 2 Steps

1. Present the ATAM

2. Present business drivers

3. Present architecture

4. Identify architectural approaches

5. Generate quality attribute utility tree

6. Analyze architectural approaches

7. Brainstorm and prioritize scenarios

8. Analyze architectural approaches

9. Present results

Recap

Phase 1

Work

Do this

Phase 2

Step 7: Brainstorm and Prioritize Scenarios

Scenarios are brainstormed in a round-robin
manner.

As in the QAW, each stakeholder is given 30%
of the number of scenarios as votes.

Stakeholders can “spend” any number of votes
on any scenario they like.

Votes are counted and the scenarios are
prioritized.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 58

Step 8: Analyze Architectural
Approaches

The evaluation team now
asks the architect to map
these new scenarios on to
the architecture.

These scenarios are “test cases”.

The evaluation team continues to probe for
risks, sensitivities, and tradeoffs.

ATAMPhase 3

Phase 3 primarily involves producing a final
report for the customer.

Typically a written report and a presentation are
created.

Follow-on activities may also be scheduled.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 59

Conceptual Flow of the ATAM

Architectural
Decisions

Scenarios
Quality

Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

Risk Themes

distilled
into

Analysis

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Benefits of the ATAM

The benefits of performing ATAM evaluations
include

� clarified quality attribute requirements

� increased communication among stakeholders

� identification of risks early in the life cycle

� documented basis for architectural decisions

� improved architecture documentation

The end result is improved architectures.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 60

Interim Summary

The ATAM is

� a method for evaluating an architecture with

respect to multiple quality attributes

� an effective strategy for discovering the

consequences of architectural decisions

� a method for identifying trends, not for performing

precise analyses

Architectural

Decisions

Scenarios
Quality

Attributes

Architectural

Approaches

Business

Drivers

Software

Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

ATAM Led to the Development of Other
Methods and Techniques

What if there’s no
architecture?

Attribute Driven

Design (ADD)

What if the quality
requirements are not
well-understood?

Quality Attribute

Workshop (QAW)

Business-IT Alignment Method (BITAM)

How do I align my architecture with
my business goals?

Which risks should I
work on first?

Cost Benefit
Analysis Method (CBAM)

Our scenarios tend to be
incomplete or ambiguous.

Quality Attribute
General Scenarios

What are some of the
most important
questions to ask?

Quality Attribute
Tactics

What if I don’t know my
system’s architecture?

Architecture Reconstruction

using ARMIN

© 2007, Rick Kazman

Analysis and Management of Software Architectures 61

The Design and Analysis Process

� Inception Activities

� Identify key stakeholders

� Identify business objectives of
the stakeholders.

� Prioritize business objectives.

� Design Activities

� Identify, describe, and prioritize
architecturally significant
requirements (ASRs).

� Design and document the
architecture.

� Validate the design decisions.

� Review Activities

� Identify, describe, and prioritize
ASRs.

� Identify architecture
description.

� Analyze architecture
description against ASRs.

� Post-Review Activities

� Summarize findings and review
them with architecture owners.

� Plan architecture

improvements.

� Refine review methods.

Planning Architecture Improvements

For a single evolutionary step, we use an
Architecture Improvement Workshop

� borrows techniques from the ATAM, from Cost-

Benefit Analysis (CBAM) and from Attribute-

Driven Design (ADD)

For the long-term, we focus on Business-IT
Alignment, using the Business-IT Alignment
Method (BITAM)

© 2007, Rick Kazman

Analysis and Management of Software Architectures 62

The Purpose of the BITAM

To systematically detect and correct

misalignments between business models,

business architectures, and IT architectures.

Benefits of the BITAM

The BITAM:

� provides a way of eliciting, collecting, prioritizing,

and organizing information needed by the

alignment/realignment process

� invites stakeholders to consider a range of

realignment strategies and provides a decision

procedure for choosing among the alternatives

� affords traceable and repeatable procedures for

easier maintenance of alignment or faster re-

alignment

© 2007, Rick Kazman

Analysis and Management of Software Architectures 63

The BITAM in Context

1) Business

Model layer

2) Business

Architecture layer

3) IT Architecture

layer

3-Layer BITAM

Architecture

Application Portfolio

Business Processes

IT Infrastructure

SOA

SOA

SOA

Service-Oriented
Enterprise Architecture

Cost Benefits

External infrastructure

services

Stakeholder
Perspective

Activity
Perspective

BPM +
IT Service Management

Resource
Perspective

External business
services

External application
services

Value Proposition

Customers S
o

c
ia

l D
im

e
n

s
io

n

T
e

c
h

n
ic

a
l

D
im

e
n

s
io

n

Service
Innovation

The BITAM-SOA Framework [Chen 2007]

Financial
Perspective

Steps of the BITAM

1. Elicit business drivers from key management stakeholders.

2. Elicit a set of operational scenarios from the entire group
of stakeholders.

3. Elicit a set of change scenarios from the entire group of
stakeholders.

4. Prioritize the collected scenarios based on risk/value.

5. Elicit the business architecture from the key information
architects.

6. Elicit the IT architecture from the key technical architects.

7. Map the operational scenarios onto the business
architecture.

8. Map the operational and change scenarios onto the IT
architecture.

9. Assess the misalignments.

© 2007, Rick Kazman

Analysis and Management of Software Architectures 64

Post Alignment…

Once alignment has been determined, the
cycle begins again, starting with Inception
Activities.

Summary

Design and analysis of architectures are mirror

activities.

These activities should reflect the axioms of the

architecture-centric approach.

To do them well you need:

� active stakeholder involvement

� clear characterizations and prioritizations of business goals
and architectural drivers (described as quality attribute
scenarios)

� an understanding of tactics and patterns

� methods that keep you focused

© 2007, Rick Kazman

Analysis and Management of Software Architectures 65

Further Reading

General Software Architecture:

� L. Bass, P. Clements, R. Kazman, Software Architecture in
Practice, 2nd ed., Addison-Wesley, 2003.

Software Architecture Analysis:

� P. Clements, R. Kazman, M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley, 2001.

BITAM:

� H-M Chen, R. Kazman, A. Garg, “BITAM: An Engineering-
principled Method for Managing Misalignments between
Business and IT Architectures”, Journal of Science of Computer
Programming, 57:1, 2005, 5-26.

Or contact me:

Rick.Kazman@gmail.com

