
1
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Future-Proofing Your Systems

Rick Kazman

Rick.Kazman@gmail.com
Software Engineering Institute/CMU

and University of Hawaii

Motivating Quotations – 1

Business is a good game—lots of competition and a
minimum of rules. You keep score with money.

-- (Atari founder) Nolan Bushnell

There’s no business like show business.

-- Irving Berlin

There's no business like show business, but there are
several businesses like accounting.

-- David Letterman

2
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Motivating Quotations – 2.

I never get the accountants in before I start up a
business. It's done on gut feeling.

-- Richard Branson

It has been my experience that competency in
mathematics, both in numerical manipulations and in
understanding its conceptual foundations, enhances
a person's ability to handle the more ambiguous and
qualitative relationships that dominate our day-to-day
financial decision-making.

-- Alan Greenspan

Decision-Making in Architecture – 1

� Architectures are at the fulcrum of a set of business,
social, and technical decisions.

� A poor decision in any dimension can be disastrous
for an organization.

� A decision in any one dimension is influenced by the
other dimensions.

� So the dimensions must managed, to be continually
aligned.

3
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Decision-Making in Architecture – 2

� Architecture decision-making is often done on an ad
hoc, gut feeling basis.

� We, as an industry, are more like Richard Branson
than Alan Greenspan.

� Why?

Decision-Making in Architecture – 3.

This talk =>

how to use economic decision-making to plan and
manage architectures for evolution, so that
alignment is optimally maintained over time.

4
Future-Proofing

Your Systems
© 2007 by Rick Kazman

The Goal of Economics-driven
Architecting

� The application of value-based activities

� that are practical

� easily implemented

� on a firm, principled basis

� with simple, clear rationale

� We aim for Pareto-optimality (80-20 rules)

� What is an 80-20 rule?

� In 1906 Vilfredo Pareto noted that 80% of income in
Italy went to 20% of the population.

Pareto Optimality

� Given a set of alternative allocations and a set of
individuals, a movement from one allocation to
another that can make at least one individual
better off, without making any other individual
worse off, is called a Pareto improvement.

� An allocation of resources is Pareto optimal when
no further Pareto improvements can be made.

� How do we achieve this in practice?

� How do we apply Pareto optimality to value-based
architecture decisions?

5
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Value

� Value is how much a product or service is worth

� Often measured in $ or € or ¥, but does not have to be

� Time, productivity, evolvability, reputation

� Trickier to measure, but extremely useful nonetheless!

� Value calculations may have many dimensions

� includes schedule, personnel, material

� includes what it is worth to the consumer, producer,
maintainer…

� Can sometimes be determined via market analysis:

� e.g. how valuable is it for the software architect to have an
evolvable design?

Value-driven View of Design

Realized in many ways, for example:

� Evaluating a given design

� Optimizing among design alternatives

� Exploring tradeoff spaces

� Exploring paths for evolution

6
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Value Example: Software Testing

� Vendor proposition

� Our test data generator will cut your test costs in half

� We’ll provide it to you for 30% of your test costs

� After you run all your tests for 50% of your original
costs, you’re 20% ahead

� Any concerns with vendor proposition?

� Test data generator is value-neutral*

� Every test case, defect is equally important

� But in reality, 20% of test cases cover 80% of business
value

* As are most current software engineering techniques

20% of Features Provide 80% of Value:
Focus Testing on These

% value for
correct customer

billing

Customer Type

100

80

60

40

20

5 10 15

Automated test
generation tool
- all tests have equal value

[Bullock, 2000]

7
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Risk
Exposure

from
Defects =
P(L) *S(L)

Acceptance,
Defect-density

testing
(all defects equal)

Value/Risk-
Driven Testing
(80-20 value distribution)

Time to Ship (amount of testing)

Resulting Reduction in Risk Exposure

Value in Software Engineering Today

� Cost-driven view of value prevails (e.g. Function
Points, COCOMO)

� No value-based design heuristics tied to design
decisions. Consider other disciplines:

� Steel construction is more costly upfront, but is quicker
to build => provides value via quicker time to market

� We lack techniques (and a common vocabulary) to
talk about value in software

� Can we talk about comparisons equivalent to “steel
versus reinforced concrete” in software design?

8
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Today’s Talk

� Towards a method for explicitly optimizing expected
value with respect to cost, schedule, constraints

� Architects are supposed to do this.

� But it’s a multi-constraint search problem through a
vast search space, with large amounts of uncertainty.

⇒ architects seldom do it well, or with confidence

⇒ even if they do it well, they can’t communicate their
rationale to decision-makers

Quantitative Decision Making

� Many valuation techniques used in IT are
borrowed from financial economics:

� Finance basics
� Return on investment

� Discounted cash flow

� Net present value

� Utility theory

� Options theory

9
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Quantitative Decision Making

� Many valuation techniques used in IT are
borrowed from financial economics:

� Finance basics
� Return on investment

� Discounted cash flow

� Net present value

� Utility theory � our focus

� Options theory

Using Utility to Guide Design

� Utility is a measure of the relative happiness or
satisfaction gained from a good or service.

� Issues:

� What level of utility can be achieved with your design?

� What is at stake in designing for more utility?

� How can you use this approach to elicit better information?

� Utility is useful to explore the trade-off space between
requirements or within one requirement, e.g.

� You want to know when more of something has no value, or
when more of something with minimal effort buys you a lot

10
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Quality Attributes

� Quality attribute requirements exert the strongest
influence on architectural design.

� Quality attributes should be designed into the architecture

� Quality attribute requirements can be expressed in a
common form.

� Quality attribute scenarios with six parts: source, stimulus,
artifact, environment, response, response measure

� Economics-driven trade-off analysis of quality attributes
requires us to express quality attributes in a common
form, prioritize them and use a common basis to compare
them to each other.

Utility Curves and Quality Attributes

0

10

20

30

40

50

60

70

80

90

100

10 9 8 7 6 5 4 3 2 1

Down time (hours)

U
ti

li
ty

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

of servers

U
ti

li
ty

Example B: Achieving more of a
quality attribute response does not
always add more value

Example A: Utility to be gained
increases monotonically as the
resources improve

11
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Utility Curves and Quality Attributes

0

10

20

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000

of concurrent users

U
ti

li
ty

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

of transactions / second

U
ti

li
ty

Example C: Step function which may
assist eliciting and designing for
critical response measures where
utility increases significantly

Example D: Constant function which
may indicate that the stakeholders
are indifferent to a particular quality
attribute level

Investments

� In any investment you should consider the:

� Potential benefit

� Cost

� Risk/uncertainty

� How do we quantify these when the investment is
software?

� The CBAM (Cost Benefit Analysis Method) extends
the ATAM framework to elicit and model costs,
benefits, and uncertainty.

12
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Example

Design A Design B

Avg Latency 500 ms. 200 ms.

Availability 99.9% 99%

Cost 3200 2600

Benefit 6100 5000

Profit 2900 2400

2400

2900

probability distribution

profit

Ramifications of the Example

� This example is, of course, over-simplified.

� However, even this simple example brings up complex
issues:
� Which architectural decisions achieve these responses?

What is their risk/uncertainty?

� How risk averse are you?

� How do you assess your level of uncertainty?

� How do you compare the value of different system qualities?

� What are the personnel/schedule implications of the
architectural decisions?

� Which sources of uncertainty do you typically have to deal
with and how would you go about characterizing,
measuring, and minimizing them?

13
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Context for the Work

Business
Goals

Architecture
Decisions

P

A

S

M

$ Benefit $

$ Cost $

P

A

S

M

CBAM’s Goal: Elicit these
and maximize difference

ATAM gives us this

The CBAM

� The aim of the CBAM (Cost Benefit Analysis
Method) is:

to explicitly associate costs, benefits, and uncertainty

with architectural decisions, as a means of
optimizing the choice of such decisions.

� We assume that an organization has the ability to
estimate costs:

� COCOMO II, Function Points, SLIM, experience...

� The CBAM is focused on eliciting benefits and
uncertainty.

14
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Building Upon the ATAM

� When the CBAM commences, the following
information must be documented:

� The system’s architecture-level design

� The prioritized business goals of the system

� The technical and business constraints

� A ranking of the scenarios

� The technical architectural decisions that are sources
of uncertainty/risk in the existing architecture

The Steps of the CBAM

Starting from this base, we then execute the steps of the
CBAM:

1. Collate scenarios.

2. Refine scenarios.

3. Prioritize scenarios.

4. Assign intra-scenario utility.

5. Develop architectural strategies (ASs) and
determine quality-attribute-response levels.

6. Determine the utility of the expected quality-attribute-
response levels by interpolation.

7. Calculate the total benefit obtained from an AS.

8. Choose ASs based on value for cost (VFC).

9. Confirm results with intuition.

15
Future-Proofing

Your Systems
© 2007 by Rick Kazman

The Iterations of the CBAM

� Typically making architectural decisions involves a
significant amount of effort.

� To optimize the use of everyone’s time, we split the
CBAM into several iterations:

� Triage, where we quickly choose a set of
architectural decisions to consider.

� Detailed Examination, where we more carefully
consider the costs, benefits, and interactions of a
subset of the architectural decisions.

An Example

� NASA’s EOSDIS (Earth Observing System Data
Information System) project, an enormous Web-
based scientific information system:
� 1.1 million lines of custom code

� 12,000 modules

� 50 COTS products

� http://eospso.gsfc.nasa.gov/

� The EOS is a constellation of satellites that gathers
data about the earth for the U. S. Global Change
Research Program.

16
Future-Proofing

Your Systems
© 2007 by Rick Kazman

1-3. Collate, Refine, and Prioritize
Scenarios

� To make architecture investment decisions, we
begin by asking what system scenarios are
important for the business goals.

� Collate the QA scenarios elicited during the ATAM
exercise.

� Prioritize based on satisfying the business goals of
the system and choose the top 1/3 for further study.

1-3. Collate, Refine, and Prioritize
Scenarios
� We collect scenarios from the stakeholders.

Initially these are unrefined, e.g.

Reduce order failures that result in lost orders.5

Reduce order failures that result in hung orders that require
manual inter-vention.

4

Reduce the number of orders that fail on the order
submission process.

3

Reduce data distribution failures that result in lost
distribution requests.

2

Reduce data distribution failures that result in hung
distribution requests requiring manual intervention.

1

Scenario DescriptionScenario

17
Future-Proofing

Your Systems
© 2007 by Rick Kazman

1-3. Collate, Refine, and Prioritize
Scenarios
� Refine the scenarios focusing on their

stimulus/response goals.

� Elicit the worst, current, desired and best QA level
for each scenario, e.g.

0% lost0% lost<1% lost10% lost5

0% hung1% hung5% hung10% hung4

0% fail1% fail5% fail10% fail3

0% lost0% lost<1% lost> 5% lost2

0% hung1% hung5% hung10% hung1

BestDesiredCurrentWorst

Response Measure GoalsScenario

1-3. Collate, Refine, and Prioritize
Scenarios

0% lost0% lost<1% lost10% lost155

0% hung1% hung5% hung10% hung104

0% fail1% fail5% fail10% fail153

0% lost0% lost<1% lost> 5% lost152

0% hung1% hung5% hung10% hung101

BestDesiredCurrentWorst

Response Measure GoalsVotesScenario

� Allocate 100 votes to each stakeholder and have
them vote on the scenarios.

� Total the votes and choose the top 50% of the
scenarios for further analysis.

18
Future-Proofing

Your Systems
© 2007 by Rick Kazman

4. Assign Intra-Scenario Utility

� How to compare the various scenarios? We need
a shared measure of “goodness”. We use utility.

� Determine the utility for each response level, e.g.

100100700155

10095800104

100100700153

100100700152

10095800101

BestDesiredCurrentWorst

Utility ScoresVotesScenario

4. Assign Intra-Scenario Utility

� Note that in this step we are converting from
technical measures (latency, mean time to failure,
of requests served per minute, etc.) to generic
measures of goodness.

� This key step allows us to compare different
quality attributes.

0%fail1% fail5% fail10% fail

100100700

153

BestDesiredCurrentWorstVotesScenario

19
Future-Proofing

Your Systems
© 2007 by Rick Kazman

5-6. Develop ASs and
Determine their QA Response Level

� Develop ASs that address the chosen scenarios.

� Determine the response levels that result from
implementing these ASs.

� Call these the expected levels. We can interpolate
their utility values.

3% hung5% hung4 Order retry6

2% hung5% hung1 Order re-assignment5

2% hung5% hung4 Order segmentation4

0% lost<1% lost5

2% Fail5% fail3Order persistence1

Expected
Response

Current
Response

Scenarios
Affected

AS NameAS

5-6. Develop ASs and
Determine their QA Response Level
� What have we elicited and developed?

� A utility/response curve!

Response

(% hung)

Utility

w

b
d

c

e

1 2 3 4 5 6 7 8 9 10

Scenario 4

b: best

c: current

e: expected

d: desired

w: worst

20
Future-Proofing

Your Systems
© 2007 by Rick Kazman

5-6. Develop ASs and
Determine their QA Response Level
� These curves will be different for different scenarios.

Response

Utility

w

b
d

c

e

3 2 1

Scenario 28

b: best

c: current

e: expected

d: desired

w: worst

7. Determine an AS’s Total Benefit

� Calculate the expected benefit of each architectural
strategy ASi.

� For each scenario where ASi is used:

� calculate the ∆improvement in utility as the difference
between the ‘current’ level and the ‘expected’ level.

� normalize this benefit amount using the votes collected
in step 1

� sum these normalized values

21
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Positive ∆Improvement

Response

Utility

w

b
d

c

e

3 2 1

Scenario 28

b: best

c: current

e: expected

d: desired

w: worst

∆improvement

Negative ∆Improvement

Response

(% hung)

Utility

w

b
d

c

e

1 2 3 4 5 6 7 8 9 10

Scenario 4

b: best

c: current

e: expected

d: desired

w: worst

∆improvement

22
Future-Proofing

Your Systems
© 2007 by Rick Kazman

7. Determine an AS’s Total Benefit

100100101044

505010546

-25

300

200

450

300

Normalized

Benefit

(Benefit x Votes)

275

950

Total Benefit

ΣScenario Normalized Benefit

3

1

AS

5-510

10309

10206

VotesBenefit
∆Utility =

Utility expected – Utility
current

Scenario

15305

15203

8. Choose ASs Based on “Value for Cost”

� Calculate the expected cost of implementing each
architectural strategy ASi that results in the expected
benefit.

� Estimate the schedule implications of each ASi in
terms of person-months of effort and/or elapsed
time.

� Note any contention for shared resources among
these estimates (hardware, software, or personnel).

23
Future-Proofing

Your Systems
© 2007 by Rick Kazman

8. Choose ASs Based on “Value for Cost”

� Now we can calculate the VFC (value for cost)
ratio of each AS investment, and its rank.

20.692754003

60.35702007

80.25502006

70.31204005

30.51002004

10.7995012001

AS RankAS VFCTotal AS

Benefit

CostAS

8. Choose ASs Based on VFC

� We are now in a position to make informed
decisions, based on:

� the QA responses of each AS and their associated
benefit,

� the costs and schedule implications of implementing
each AS

24
Future-Proofing

Your Systems
© 2007 by Rick Kazman

9. Confirm Results With Intuition

� Each CBAM step involves stakeholder input, and
hence subjectivity.

� To ensure that the results are well-founded we
examine the results, with respect to the business
goals of the system.

� If the results conflict with intuition we need to
determine if there are other issues that have not
been considered while making these decisions.

The Process (Recap)

Cost

Benefit

� We select scenarios and ASs to address them.

� We elicit the benefits and costs of each AS.

25
Future-Proofing

Your Systems
© 2007 by Rick Kazman

The Process (Recap)

Cost

Benefit

� We can also determine the uncertainty associated
with each AS.

The Process (Recap)

Cost

Benefit

� Some ASs must be chosen. Remove these from
consideration.

26
Future-Proofing

Your Systems
© 2007 by Rick Kazman

The Process (Recap)

Cost

Benefit

� Now consider the set of high benefit, low cost ASs.

The Process (Recap)

Cost

Benefit

X
X

� Some ASs may be excluded because of resource or
time-to-market/schedule conflicts.

27
Future-Proofing

Your Systems
© 2007 by Rick Kazman

The Final Result

Cost

Benefit

� Choose a final set to implement.

� Some ASs may be in/excluded because of
dependencies.

The Result

� After this exercise, we have determined a set of ASs
that address our highest priority scenarios.

� These chosen ASs represent the optimal set of
architectural investments.

� They are optimal based upon considerations of:
� benefit

� cost

� schedule

� uncertainty

� This gives us a single step in evolving an architecture

28
Future-Proofing

Your Systems
© 2007 by Rick Kazman

An Economics-Based Method
for Evolving Architectures

Final Motivating Quotation

It’s tough to make predictions, especially about the
future.

-- Yogi Berra

29
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Supporting Evolution

� The CBAM addresses a single “snapshot” of
architectural decisions.

� This is already complex.

� How do we think about evolution, which is a
trajectory of architecture decisions?

Evolving An Architecture - 1

� Evolution is a process of strategic planning to
maximize system value.

� Evolution starts with (and critically depends on)
business strategy.

� But this strategy needs to be translated into an
actionable plan for the enterprise architecture and,
eventually, for individual system architectures.

� How do we do this?

� How do we maximize future system value in the face
of uncertainty?

30
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Evolving an Architecture - 2

� When trying to calculate future system value, you
need to consider a series of events, motivated by
business strategy, and represented by strategic
scenarios.

� Maximizing system value is then an optimization
problem => choosing an optimal set of

[strategic scenario, architecture strategy]

pairs

� How do we do this?

An Architecture Evolution Method - 1

ScenarioValue =
Probability * Importance (1)

Q: But what is Importance?

A: Importance can be calculated by estimating the size
of the gain (or loss) associated with this scenario,
along with its frequency.

31
Future-Proofing

Your Systems
© 2007 by Rick Kazman

An Architecture Evolution Method - 2

ScenarioValue =
Probability * Size(Gain|Loss) * Frequency (2)

Q: But how do we compare these values, given that the
scenarios are not all exercised at the same time.

A: To properly compare them we need to consider the
Net Present Value of the gain or loss.

An Architecture Evolution Method - 3

ScenarioValue =
Probability * NPV(Size(Gain|Loss)) * Frequency (3)

Q: How do we compute the Size(Gain | Loss) term?

A: Use ∆Utility and cost (as in the CBAM).

32
Future-Proofing

Your Systems
© 2007 by Rick Kazman

An Architecture Evolution Method - 4

ScenarioValuei,j =

Probabilityi * NPV(∆Utilityi,j - Costj) * Frequencyi (4)

We’ve arrived!

Choosing an evolution path involves choosing a set of
ASj such that:

Σ ScenarioValuei,j

is maximized.

Reflections

� We started by claiming that evolution was a series of
strategic scenarios.

� This is, of course, an over-simplification.

� In reality, we seldom consider series—a simple
line—except in retrospect.

� For evolution we need to consider a multi-
dimensional space of events, each of which has
some conditional probability.

33
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Reflections - 2

� Consider a single quality attribute: performance.

� How do we plan for uncertainty?

Time

Tx / day

Original

Revised

Architectural Support for Uncertainty

� Architectural strategies are real options

⇒ provide architects the right, but not the obligation, to
take subsequent design actions

� We cannot value architectural strategies by simply
estimating their future utility along a small number of
trajectories defined by a set of strategic scenarios

� We need to consider their value taking uncertainty
into account.

34
Future-Proofing

Your Systems
© 2007 by Rick Kazman

An Architecture Evolution Method - 5

� Instead of using the term NPV(∆Utilityi,j - Costj) in
formula (4), we will use a real option valuation (ROV)
formulation of the architectural strategy

� Our formula now becomes:

ScenarioValuei,j =

Probabilityi * ROVi,j * Frequencyi (5)

Now we are in a position to describe a method.

A Method to Optimize Architecture-Based
Evolution

1. Create a set of strategic scenarios

2. For each strategic scenario created rate:
� Probability of occurrence

� Frequency of occurrence

3. Assign intra-scenario utility

4. Develop architectural strategies (ASs) and
determine QA response levels.

5. Determine the utility of each AS’s expected QA
response level by interpolation.

6. Calculate the total benefit obtained from an AS
using the binomial options pricing model.

7. Optimize over all [strategic scenario, AS] pairs

35
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Status

� Parts of this method are already road-tested.

� The method is currently being piloted in two
engagements.

� Stay tuned!

Summary

� The CBAM is a method for optimizing architecture
investment decisions, considering cost, benefit, and
uncertainty.

� The evolution method helps stakeholders prioritize
and cluster changes to an architecture.

� The evolution method builds upon the CBAM, but
adds in more sophisticated modeling of benefit,
dependencies, and uncertainty.

36
Future-Proofing

Your Systems
© 2007 by Rick Kazman

Further Resources

� L. Bass, P. Clements, R. Kazman, Software Architecture in
Practice, 2nd ed., Addison-Wesley, 2003.

� P. Clements, R. Kazman, M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley,
2001.

� R. Nord, et al, “Integrating the Architecture Tradeoff Analysis
Method with the Cost Benefit Analysis Method”, SEI
Technical Report CMU/SEI-2003-TN-038, 2004.

� R. Kazman, J. Asundi, M. Klein, “Making Architecture Design
Decisions: An Economic Approach”, SEI Technical Report
CMU/SEI-2002-TR-035, 2002.

� I. Ozkaya, R. Kazman, M. Klein, “Quality-Attribute Based
Economic Valuation of Architectural Patterns”, SEI Technical
Report CMU/SEI-2006-TR-022, 2006.

